數(shù)百微生物基因組草圖繪成
發(fā)布時(shí)間:
2022-11-16
作者:
數(shù)百微生物基因組草圖繪成
鑒定出上千基因簇,全新抗生素或由此產(chǎn)生
科技日?qǐng)?bào)北京6月14日電(記者張夢(mèng)然)英國(guó)《自然》雜志14日在線發(fā)表的一項(xiàng)微生物學(xué)最新成果,美國(guó)科學(xué)家團(tuán)隊(duì)繪制完成數(shù)百個(gè)非培養(yǎng)且未被研究過(guò)的微生物基因組草圖,并鑒定出了一千多個(gè)生物合成基因簇。研究表明,土壤中的細(xì)菌極有可能代表了一種有待開發(fā)的新型抗生素,以及其他藥用化合物的來(lái)源。
細(xì)菌在與抗生素的博弈中,已經(jīng)變得越來(lái)越厲害??股乇举|(zhì)上是微生物(包括細(xì)菌、真菌、放線菌屬)或高等動(dòng)植物在生活過(guò)程中所產(chǎn)生的一類次級(jí)代謝產(chǎn)物,具有抗病原體或其他活性的作用,會(huì)干擾其他細(xì)胞的發(fā)育功能。目前科學(xué)界認(rèn)為,遏制耐藥性感染增多趨勢(shì),需要全新的抗生素。但過(guò)去30年里,僅有非常少量的新抗生素被開發(fā)出來(lái),人們急需新的抗生素來(lái)對(duì)抗多藥耐藥型病原體。
美國(guó)加州大學(xué)伯克利分校研究人員朱利安·本菲爾德及其同事,此次成功繪制出了數(shù)百個(gè)非培養(yǎng)且基本未被研究過(guò)的微生物的基因組草圖,這些微生物來(lái)自加利福尼亞州北部一片草原的土壤生態(tài)系統(tǒng)。隨后,研究團(tuán)隊(duì)鑒定出了一千多個(gè)生物合成基因簇,推測(cè)它們可合成一系列分子,包括各種肽、抗菌毒素和功能不明的其他代謝物。這些基因的表達(dá)因土壤樣品采集的深度和位置而有所不同,反映了它們對(duì)不同環(huán)境條件的生物反應(yīng)。
已知土壤中的微生物會(huì)產(chǎn)生多種有用的次級(jí)代謝物,包括抗生素、抗真菌劑和免疫抑制劑,但是它們大多數(shù)都來(lái)源于少數(shù)培養(yǎng)的微生物群。而今這項(xiàng)研究擴(kuò)大了這些分子的潛在來(lái)源范圍,甚至還發(fā)現(xiàn)了兩個(gè)以前未知的、具有異常強(qiáng)大生物合成能力的細(xì)菌種類。此外,這項(xiàng)研究也提出了土壤微生物使用這種復(fù)雜的化學(xué)語(yǔ)言相互溝通的可能性。
上世紀(jì)40年代,青霉素出現(xiàn)后改變了世界——抗生素讓許多以往的不治之癥可以被治愈。但隨之,病毒也在持續(xù)進(jìn)化并產(chǎn)生耐藥性。人們認(rèn)為,唯一有效辦法是制造新的抗生素出來(lái)——這需要大量相關(guān)的基礎(chǔ)研究來(lái)確認(rèn)產(chǎn)生抗生素的微生物,包括檢查上千種不同樣本,培養(yǎng)、篩選并確定其不是老抗生素。亦因此,數(shù)百個(gè)未被研究過(guò)且非人工培養(yǎng)的微生物基因組草圖,才被視作全新抗生素出現(xiàn)的希望。
Hundreds of microbial genomes have been sketched out
Thousands of gene clusters have been identified, and new antibiotics may be created
Journal of science and technology Beijing, June 14 (xinhua Zhang Mengran) UK 14, published online in the journal nature of the latest achievements in a microbiology, scientists in the United States team mapped hundreds of cultivation and none of them has been studied microbial genome sequence, and identified more than one thousand biosynthesis gene cluster. Studies have shown that bacteria in the soil are likely to represent a new antibiotic to be developed, as well as a source of other medicinal compounds.
Bacteria have become more and more powerful in the game against antibiotics. Antibiotics is essentially microbes (including bacteria, fungi and actinomycetes) or higher animals and plants in the process of the life of a class of secondary metabolites, have the function of the resistance to pathogen or other activity, interferes with the development of other cellular functions. Scientists now believe new antibiotics are needed to stem the rise of drug-resistant infections. But in the past 30 years, only a very small number of new antibiotics have been developed, and new antibiotics are urgently needed to fight multidrug-resistant pathogens.
Researchers at the university of California, Berkeley, Julian in this field, and his colleagues, the successful produced hundreds of cultivation and basic has not been studied the microbial genome sequence, the microbes from northern California a prairie soil ecosystem. The team then identified more than a thousand biosynthetic gene clusters and speculated that they could synthesize a range of molecules, including peptides, antibacterial toxins and other metabolites with unknown functions. The expression of these genes varies with the depth and location of soil samples collected, reflecting their biological responses to different environmental conditions.
Known soil microbes can produce a variety of useful secondary metabolites, including antibiotic, antifungal agent and immune inhibitor, but most of them are all derived from the microbiota minority culture. Now the study has expanded the potential sources of these molecules and even found two previously unknown species of bacteria with unusually strong biosynthesis capabilities. The study also raised the possibility that soil microbes could communicate with each other using this complex chemical language.
Penicillin changed the world in the 1940s with the advent of antibiotics that allowed many formerly incurable diseases to be cured. But then the virus continues to evolve and develop resistance. It is believed that the only effective way is to make new antibiotics out - it needs a large number of related basic research to confirm the antibiotic of microbes, including check thousands of different samples, training, screening and determine its not old antibiotics. As a result, hundreds of unstudied, uncultured sketches of microbial genomes are seen as promising new antibiotics.